105 research outputs found

    Synthesis of zwitterionic-functionalized conjugated nanoparticles for targeted drug delivery applications

    Get PDF
    Polymeric Nanoparticles (NPs) represent a promising pharmacological tool, since their structure can be modified to obtain: i) encapsulation and controlled release of a wide range of active compounds, ranging from small molecules to siRNA or oligonucleotides; ii) selective cell targeting, thus allowing precise drug delivery to the desired site of action. A powerful strategy to achieve selectivity of uptake in specific cell types is to conjugate the nanoparticles to a ligand specific for receptors expressed by the target cell type. This offers the advantage of a potentially improved drug efficacy with limited side effects and toxicity. Polymeric nanoparticles in a range of 20–100 nm have a high potential for in vivo applications, due to their ability to circulate in the blood for a long period of time. In fact, this size range allows to avoid renal and lymphatic clearance, to prevent opsonization and at the same time improves the internalization by cells. In this work we address the synthesis by reversible addition-fragmentation chain transfer (RAFT) of biodegradable, zwitterionic-based nanoparticles. This Zwitterionic nanoparticles act as super non-fouling surfaces that prevent protein adsorption from complex biological media. The nanoparticles were functionalized with different numbers of selective ligands through click chemistry; different dimensions were synthetized changing the length of the hydrophobic part. In vitro studies were performed to evaluate the uptake of functionalized nanoparticles

    Kidney Transplant Modifies the Architecture and Microenvironment of Basal Cell Carcinomas

    Get PDF
    Background/Aims: Basal cell carcinoma (BCC) is a frequent type of nonmelanoma skin cancer, which shows a greater prevalence in kidney-transplanted (KT) patients than in the general population. The study of this tumor in KT patients may allow us to understand the influence of the tumor inflammatory microenvironment on cancer behavior, and to design new image analysis methods to determine prognosis and apply personalized medicine. The major hypothesis of the present work is that antirejection drugs, by modifying the B-cell/T-cell balance, induce measurable differences in tumoral cell microarchitecture and in the inflammatory microenvironment in KT patients compared to nontransplanted controls. Methods: In this retrospective study in an Italian cohort including 15 KT patients and 15 control subjects from the general population who developed BCC, we analyzed tissue microarchitecture and inflammatory infiltrates of BCC using state-of-the-art nonlinear image analysis techniques such as fractal dimension and sample entropy of internuclear distances. Results: KT patients showed a nonsignificant trend to a greater number of nuclei in the basal cell layer compared to non-KT controls and subtle changes in the intact skin compared to controls. Similarly, the number of mitoses per unit length was almost doubled in the patients with KT compared to controls. However, when the number of mitotic cells was normalized by the total number of cells in the basal layer (mitotic index), these differences were not significant, although a clear trend was still present. Finally, KT patients showed a nonsignificant trend to an increased ­density of inflammatory cells close to the tumoral cell layer. When considering the intact skin, this difference was significant, with a 70% increase in the density of inflammatory cells. Conclusion: Data comparing the microarchitecture of BCC in normal subjects and KT patients are scanty, and the present study is the first to use nonlinear image analysis techniques to this aim. The observed differences underscore the relevance of T-cell suppression in cancer behavior. These data suggest that BCC develops in treated patients with specific biological characteristics which should be further analyzed in terms of therapeutic response

    Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy)

    Get PDF
    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS – Baia Levante beach) obtaid during the 1977–1993 heating phase of the crater fumaroles

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    A review on the electron ionization and fast atom bombardment mass spectrometry of polyphenols naturally occurring in olive wastes and some of their derivatives

    No full text
    corecore